Institut für Technische Informatik Lehrstuhl für Rechnerarchitektur und Parallelverarbeitung Prof. Dr. rer. nat. Wolfgang Karl

Zentralübung Rechnerstrukturen: Pipelining und Superskalartechniken

4. Aufgabenblatt – Musterlösung

1 Pipelining

- a) Ohne Pipelining: Zykluszeit = Summe aller Stufen Zykluszeit = 250 ps + 100 ps + 130 ps + 220 ps + 50 ps = 750 ps
 - Mit Pipelining: Zykluszeit = Längste Stufe + Latenz des Pipelineregisters Zykluszeit = 250 ps (IF-Stufe) + 20 ps = 270 ps

b) SpeedUp =
$$\frac{\text{average exec time w/o pipeline}}{\text{average exec time w pipeline}} = \frac{\text{CPI * CycleTime w/o p}}{\text{CPI * CycleTime w p}} = \frac{1,0*750\,ps}{1,2*270\,ps} \approx 2,31$$

- c) IF ID + EX MA + WB
- d) Die Zykluszeit wird von der Ausführungszeit längsten Stufe bestimmt
 ⇒ Aufteilung der längsten Stufe, hier der IF-Stufe
 Die Aufteilung einer anderen Stufe würde zu keiner Reduktion der Zykluszeit führen.

2 Algorithmus von Tomasulo I

#	Instruktion	Issue	Executes	Writes Result
1	mul r2, r1, r1	1	2	6
2	div r4, r4, r2	2	7	15
3	add r1, r4, r4	3	16	18
4	add r2, r4, r3	4	19	21
5	div r1, r2, r3	7	22	30
6	sub r4, r4, r2	8	22	24
7	add r3, r1, r2	9	31	33
8	mul r1, r2, r3	16	34	38
9	add r3, r3, r3	19	34	36
10	sub r4, r4, r1	22	39	41

3 Algorithmus von Tomasulo II

Hinweis: Schauen Sie sich auch die Übungsfolien mit den ausführlichen Erläuterungen an!

Befehl		Takt	KT																				
		_	7	3	4	S	9	7	∞	6	10		11 12 13	13	14 15 16	15	16	17	18	19	20	21	22
LD.D	FO, 0 (R1)	H		IS	Σ	Σ	Σ	MB															
ADD.D	F4, F0, F2	H	П	IS				EX	EX	WB													
	0(R1),F4		H		IS					Σ	Σ	Σ											
ADD	R1, R1, #8		H		IS	EX	WB																
SUB	R3, R1, R2			H			IS	EX	WB														
BLTZ	R3, LOOP			田					IS	EX	WB												
LD.D	FO, 0 (R1)				H	А		IS	M	Z	Z	WB											
ADD.D	F4, F0, F2				H	А				IS		EX	EX	WB									
S.D	0(R1),F4					H						IS		Ξ	Σ	Σ							
ADD	R1, R1, #8					H					IS	EX	WB										
SUB	R3, R1, R2						H						IS	EX	WB								
BLTZ	R3, LOOP						H									EX	WB						
LD.D	FO, 0 (R1)							出	А			IS		Σ	Z	Σ	WB						
ADD.D	F4, F0, F2							H						S			EX	EX	WB				
	0(R1),F4								H							IS			Σ	Σ	Σ		
ADD	R1, R1, #8								H								IS	EX	MB				
SUB	R3, R1, R2									出										EX	WB		
BLTZ	R3, LOOP									田											IS	EX WB	WB

4 VLIW-Prozessoren

Hinweis: Schauen Sie sich auch die Übungsfolien mit den ausführlichen Erläuterungen an!

a)	Slot 1	Slot 2	Slot 3
	add r1, r2, r3	sub r5, r3, r5	ld r11, [r12]
	ld r3, [r1]	ld r9, [r7]	add r11, r11, r12
	mul r3, r3, r3	mul r11, r11, r9	
	st [r5], r3	st [r12], r11	

b)			
D)	Slot 1 (ALU)	Slot 2 (ALU)	Slot 3 (L/S)
	add r1, r2, r3	sub r5, r3, r5	ld r11, [r12]
	add r11, r11, r12		ld r3, [r1]
	mul r3, r3, r3		ld r9, [r7]
	mul r11, r11, r9		st [r5], r3
			st [r12], r11